GRADE 7
FCAT Saturday Workshop
Packet 1: ANSWERS

Fractions, Decimals, & Percents
Proportions & Similarity
Equivalent Fractions (A) Answers

Instructions: Find the missing numbers in the equivalent fractions below.

\[
\begin{array}{cccccc}
\frac{2}{5} &=& \frac{8}{20} & \frac{5}{7} &=& \frac{15}{21} & \frac{1}{8} &=& \frac{4}{32} \\
4 \times &=& 3 \times &=& 4 \times &=& 3 \times \\
\frac{8}{10} &=& \frac{32}{40} & \frac{3}{10} &=& \frac{12}{40} & \frac{1}{9} &=& \frac{2}{18} \\
4 \times &=& 4 \times &=& 2 \times &=& 2 \times \\
\frac{1}{2} &=& \frac{4}{8} & \frac{4}{6} &=& \frac{16}{24} & \frac{5}{10} &=& \frac{20}{40} & \frac{5}{6} &=& \frac{20}{24} \\
4 \times &=& 4 \times &=& 4 \times &=& 4 \times \\
\frac{1}{4} &=& \frac{2}{8} & \frac{5}{8} &=& \frac{15}{24} & \frac{1}{7} &=& \frac{3}{21} & \frac{4}{9} &=& \frac{12}{27} \\
2 \times &=& 3 \times &=& 3 \times &=& 3 \times \\
\frac{1}{6} &=& \frac{4}{24} & \frac{1}{3} &=& \frac{5}{15} & \frac{3}{7} &=& \frac{12}{28} & \frac{1}{3} &=& \frac{3}{9} \\
4 \times &=& 5 \times &=& 4 \times &=& 3 \times \\
\frac{7}{12} &=& \frac{35}{60} & \frac{1}{5} &=& \frac{2}{10} & \frac{2}{9} &=& \frac{8}{36} & \frac{2}{4} &=& \frac{10}{20} \\
5 \times &=& 2 \times &=& 4 \times &=& 5 \times \\
\end{array}
\]
Find the value of each expression in lowest terms.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\frac{6}{5} \div \frac{4}{3})</td>
<td>(\frac{9}{10})</td>
</tr>
<tr>
<td>2. (\frac{2}{7} \div \frac{11}{10})</td>
<td>(\frac{20}{77})</td>
</tr>
<tr>
<td>3. (\frac{1}{4} \div \frac{13}{9})</td>
<td>(\frac{9}{52})</td>
</tr>
<tr>
<td>4. (\frac{16}{9} \div \frac{20}{9})</td>
<td>(\frac{4}{5})</td>
</tr>
<tr>
<td>5. (\frac{2}{9} \div \frac{18}{7})</td>
<td>(\frac{7}{81})</td>
</tr>
<tr>
<td>6. (\frac{2}{3} \div \frac{15}{7})</td>
<td>(\frac{14}{45})</td>
</tr>
<tr>
<td>7. (\frac{4}{3} \div \frac{9}{5})</td>
<td>(\frac{20}{27})</td>
</tr>
<tr>
<td>8. (\frac{9}{8} \div \frac{7}{2})</td>
<td>(\frac{9}{28})</td>
</tr>
<tr>
<td>9. (\frac{5}{4} \div \frac{19}{10})</td>
<td>(\frac{25}{38})</td>
</tr>
<tr>
<td>10. (\frac{19}{4} \div \frac{19}{3})</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>11. (\frac{8}{7} \div \frac{13}{8})</td>
<td>(\frac{64}{91})</td>
</tr>
<tr>
<td>12. (\frac{9}{5} \div \frac{20}{3})</td>
<td>(\frac{27}{100})</td>
</tr>
</tbody>
</table>
Adding Fractions (A) Answers

Find the value of each expression in lowest terms.

1. \(\frac{3}{4} + \frac{1}{16} = \frac{13}{16}\)
2. \(\frac{3}{14} + \frac{1}{3} = \frac{23}{42}\)
3. \(\frac{9}{11} + \frac{1}{11} = \frac{10}{11}\)
4. \(\frac{1}{3} + \frac{2}{17} = \frac{23}{51}\)
5. \(\frac{2}{5} + \frac{1}{10} = \frac{1}{2}\)
6. \(\frac{1}{19} + \frac{1}{2} = \frac{21}{38}\)
7. \(\frac{6}{19} + \frac{2}{3} = \frac{56}{57}\)
8. \(\frac{1}{3} + \frac{1}{6} = \frac{1}{2}\)
9. \(\frac{1}{4} + \frac{1}{2} = \frac{3}{4}\)
10. \(\frac{1}{2} + \frac{3}{16} = \frac{11}{16}\)
11. \(\frac{2}{11} + \frac{1}{2} = \frac{15}{22}\)
12. \(\frac{4}{11} + \frac{3}{8} = \frac{65}{88}\)
Subtracting Fractions (A) Answers

Find the value of each expression in lowest terms.

1. \(\frac{3}{10} - \frac{3}{20} = \frac{3}{20} \)

2. \(\frac{18}{19} - \frac{16}{19} = \frac{2}{19} \)

3. \(\frac{12}{17} - \frac{3}{17} = \frac{9}{17} \)

4. \(\frac{9}{10} - \frac{2}{5} = \frac{1}{2} \)

5. \(\frac{5}{11} - \frac{3}{11} = \frac{2}{11} \)

6. \(\frac{1}{2} - \frac{5}{16} = \frac{3}{16} \)

7. \(\frac{11}{16} - \frac{1}{4} = \frac{7}{16} \)

8. \(\frac{13}{15} - \frac{1}{3} = \frac{8}{15} \)

9. \(\frac{1}{2} - \frac{1}{8} = \frac{3}{8} \)

10. \(\frac{1}{2} - \frac{1}{20} = \frac{9}{20} \)

11. \(\frac{8}{9} - \frac{8}{9} = 0 \)

12. \(\frac{17}{20} - \frac{4}{5} = \frac{1}{20} \)
Converting Common Fractions to Decimals (A) Answers

Instructions: Write the decimal equivalent beside each fraction.

\[
\frac{2}{5} = 0.4 \quad \frac{7}{10} = 0.7 \quad \frac{3}{4} = 0.75
\]

\[
\frac{9}{20} = 0.45 \quad \frac{11}{20} = 0.55 \quad \frac{2}{5} = 0.4
\]

\[
\frac{3}{10} = 0.3 \quad \frac{9}{10} = 0.9 \quad \frac{3}{5} = 0.6
\]

\[
\frac{4}{5} = 0.8 \quad \frac{19}{20} = 0.95 \quad \frac{13}{20} = 0.65
\]

\[
\frac{13}{20} = 0.65 \quad \frac{3}{5} = 0.6 \quad \frac{1}{4} = 0.25
\]

\[
\frac{1}{2} = 0.5 \quad \frac{3}{20} = 0.15 \quad \frac{13}{20} = 0.65
\]

\[
\frac{3}{4} = 0.75 \quad \frac{1}{4} = 0.25 \quad \frac{3}{5} = 0.6
\]
Proportions

State if each pair of ratios forms a proportion.

1) \(\frac{4}{2} \) and \(\frac{20}{6} \)
 - No

2) \(\frac{3}{2} \) and \(\frac{18}{8} \)
 - No

3) \(\frac{4}{3} \) and \(\frac{16}{12} \)
 - Yes

4) \(\frac{4}{3} \) and \(\frac{8}{6} \)
 - Yes

5) \(\frac{12}{24} \) and \(\frac{3}{4} \)
 - No

6) \(\frac{6}{9} \) and \(\frac{2}{3} \)
 - Yes

Solve each proportion.

7) \(\frac{10}{k} = \frac{8}{4} \)
 - \{5\}

8) \(\frac{m}{10} = \frac{10}{3} \)
 - \{33.33\}

9) \(\frac{2}{x} = \frac{7}{9} \)
 - \{2.57\}

10) \(\frac{3}{x} = \frac{7}{10} \)
 - \{4.28\}
11) \(\frac{4}{9} = \frac{2}{x} \)
 \{4.5\}

12) \(\frac{6}{a} = \frac{3}{8} \)
 \{16\}

13) \(\frac{8n}{8} = \frac{8}{3} \)
 \{2.66\}

14) \(\frac{7}{9} = \frac{a}{5} \)
 \{3.88\}

15) \(\frac{p}{8} = \frac{13}{2} \)
 \{52\}

16) \(\frac{3}{13} = \frac{v}{3} \)
 \{0.69\}

17) \(\frac{10}{12} = \frac{2}{n} \)
 \{2.4\}

18) \(\frac{11}{10} = \frac{r}{11} \)
 \{12.1\}

19) \(\frac{x}{9} = \frac{7}{14} \)
 \{4.5\}

20) \(\frac{a}{10} = \frac{11}{14} \)
 \{7.85\}

21) \(\frac{v}{12} = \frac{10}{2} \)
 \{60\}

22) \(\frac{6}{14} = \frac{5}{n} \)
 \{11.66\}

Create your own worksheets like this one with **Infinite Pre-Algebra**. Free trial available at KutaSoftware.com
Proportion Word Problems

Answer each question and round your answer to the nearest whole number.

1) If you can buy one can of pineapple chunks for $2 then how many can you buy with $10?
 \[\frac{1 \text{ can}}{2 \text{ dollars}} = \frac{x \text{ cans}}{10 \text{ dollars}} \]
 \[x = \frac{10 \text{ dollars}}{2 \text{ dollars}} \times 1 \text{ can} = 5 \text{ cans} \]

2) One jar of crushed ginger costs $2. How many jars can you buy for $4?
 \[\frac{1 \text{ jar}}{2 \text{ dollars}} = \frac{x \text{ jars}}{4 \text{ dollars}} \]
 \[x = \frac{4 \text{ dollars}}{2 \text{ dollars}} \times 1 \text{ jar} = 2 \text{ jars} \]

3) One cantaloupe costs $2. How many cantaloupes can you buy for $6?
 \[\frac{1 \text{ cantaloupe}}{2 \text{ dollars}} = \frac{x \text{ cantaloupes}}{6 \text{ dollars}} \]
 \[x = \frac{6 \text{ dollars}}{2 \text{ dollars}} \times 1 \text{ cantaloupe} = 3 \text{ cantaloupes} \]

4) One package of blueberries costs $3. How many packages of blueberries can you buy for $9?
 \[\frac{1 \text{ package}}{3 \text{ dollars}} = \frac{x \text{ packages}}{9 \text{ dollars}} \]
 \[x = \frac{9 \text{ dollars}}{3 \text{ dollars}} \times 1 \text{ package} = 3 \text{ packages} \]

5) Shawna reduced the size of a rectangle to a height of 2 in. What is the new width if it was originally 24 in wide and 12 in tall?
 \[\frac{2 \text{ in}}{12 \text{ in}} = \frac{w \text{ in}}{24 \text{ in}} \]
 \[w = \frac{24 \text{ in}}{12 \text{ in}} \times 2 \text{ in} = 4 \text{ in} \]

6) Ming was planning a trip to Western Samoa. Before going, she did some research and learned that the exchange rate is 6 Tala for $2. How many Tala would she get if she exchanged $6?
 \[\frac{6 \text{ Tala}}{2 \text{ dollars}} = \frac{x \text{ Tala}}{6 \text{ dollars}} \]
 \[x = \frac{6 \text{ dollars}}{2 \text{ dollars}} \times 6 \text{ Tala} = 18 \text{ Tala} \]

7) Jasmine bought 32 kiwi fruit for $16. How many kiwi can Lisa buy if she has $4?
 \[\frac{32 \text{ kiwi}}{16 \text{ dollars}} = \frac{x \text{ kiwi}}{4 \text{ dollars}} \]
 \[x = \frac{4 \text{ dollars}}{16 \text{ dollars}} \times 32 \text{ kiwi} = 8 \text{ kiwi} \]

8) If you can buy four bulbs of elephant garlic for $8 then how many can you buy with $32?
 \[\frac{4 \text{ bulbs}}{8 \text{ dollars}} = \frac{x \text{ bulbs}}{32 \text{ dollars}} \]
 \[x = \frac{32 \text{ dollars}}{8 \text{ dollars}} \times 4 \text{ bulbs} = 16 \text{ bulbs} \]

9) One bunch of seedless black grapes costs $2. How many bunches can you buy for $20?
 \[\frac{1 \text{ bunch}}{2 \text{ dollars}} = \frac{x \text{ bunches}}{20 \text{ dollars}} \]
 \[x = \frac{20 \text{ dollars}}{2 \text{ dollars}} \times 1 \text{ bunch} = 10 \text{ bunches} \]

10) The money used in Jordan is called the Dinar. The exchange rate is $3 to 2 Dinars. Find how many dollars you would receive if you exchanged 22 Dinars.
 \[\frac{3 \text{ dollars}}{2 \text{ Dinars}} = \frac{x \text{ dollars}}{22 \text{ Dinars}} \]
 \[x = \frac{22 \text{ Dinars}}{2 \text{ Dinars}} \times 3 \text{ dollars} = 33 \text{ dollars} \]
11) Gabriella bought three cantaloupes for $7. How many cantaloupes can Shayna buy if she has $21?

9

12) Jenny was planning a trip to the United Arab Emirates. Before going, she did some research and learned that the exchange rate is 4 Dirhams for every $1. How many Dirhams would she get if she exchanged $5?

20 Dirhams

13) Castel bought four bunches of fennel for $9. How many bunches of fennel can Mofor buy if he has $18?

8

14) If you can buy one fruit basket for $30 then how many can you buy with $60?

2

Answer each question. Round your answer to the nearest tenth. Round dollar amounts to the nearest cent.

15) Asanji took a trip to Mexico. Upon leaving he decided to convert all of his Pesos back into dollars. How many dollars did he receive if he exchanged 42.7 Pesos at a rate of $5.30 = 11.1 Pesos?

$20.39

16) The currency in Argentina is the Peso. The exchange rate is approximately $3 = 1 Peso. At this rate, how many Pesos would you get if you exchanged $121.10?

40.4 Pesos

17) Mary reduced the size of a painting to a width of 3.3 in. What is the new height if it was originally 32.5 in tall and 42.9 in wide?

2.5 in

18) Molly bought two heads of cabbage for $1.80. How many heads of cabbage can Willie buy if he has $28.80?

32
Each pair of figures is similar. Find the missing side.

1) \[
\frac{12}{20} = \frac{3}{x} \quad \Rightarrow \quad x = \frac{20 \times 3}{12} = 5
\]

2) \[
\frac{x}{1} = \frac{9}{3} \quad \Rightarrow \quad x = \frac{1 \times 9}{3} = 3
\]

3) \[
\frac{x}{4} = \frac{8}{16} \quad \Rightarrow \quad x = \frac{4 \times 16}{8} = 8
\]

4) \[
\frac{5}{4} = \frac{x}{8} \quad \Rightarrow \quad x = \frac{5 \times 8}{4} = 10
\]

5) \[
\frac{14}{x} = \frac{2}{1} \quad \Rightarrow \quad x = \frac{14 \times 1}{2} = 7
\]

6) \[
\frac{6}{9} = \frac{24}{x} \quad \Rightarrow \quad x = \frac{9 \times 24}{6} = 36
\]

7) \[
\frac{10}{9} = \frac{99}{x} \quad \Rightarrow \quad x = \frac{9 \times 99}{10} = 89.1
\]

8) \[
\frac{10}{x} = \frac{100}{100} \quad \Rightarrow \quad x = \frac{10 \times 100}{100} = 10
\]
17)
\[
\begin{array}{c}
\text{9} \\
\text{13} \\
\text{13} \\
\text{x} \\
\text{130} \\
\text{90} \\
\text{130} \\
\end{array}
\]

18)
\[
\begin{array}{c}
\text{8} \\
\text{x} \\
\text{12} \\
\text{2} \\
\text{3} \\
\end{array}
\]

12

19)
\[
\begin{array}{c}
\text{x} \\
\text{52} \\
\text{44} \\
\end{array}
\]

16

20)
\[
\begin{array}{c}
\text{56} \\
\text{40} \\
\text{x} \\
\text{5} \\
\text{7} \\
\text{5} \\
\text{7} \\
\text{5} \\
\end{array}
\]

56

21)
\[
\begin{array}{c}
\text{7} \\
\text{11} \\
\text{4} \\
\end{array}
\]

143

22)
\[
\begin{array}{c}
\text{14} \\
\text{x} \\
\text{1} \\
\text{8} \\
\text{112} \\
\end{array}
\]

14

23)
\[
\begin{array}{c}
\text{13} \\
\text{3} \\
\text{13} \\
\text{3} \\
\end{array}
\]

27

24)
\[
\begin{array}{c}
\text{84} \\
\text{91} \\
\text{x} \\
\text{28} \\
\end{array}
\]

13

Create your own worksheets like this one with Infinite Pre-Algebra. Free trial available at KutaSoftware.com
Similar Figure Word Problems

Answer each question and round your answer to the nearest whole number.

1) A 6 ft tall tent standing next to a cardboard box casts a 9 ft shadow. If the cardboard box casts a shadow that is 6 ft long then how tall is it?

 4 ft

2) A telephone booth that is 8 ft tall casts a shadow that is 4 ft long. Find the height of a lawn ornament that casts a 2 ft shadow.

 4 ft

3) A map has a scale of 3 cm : 18 km. If Riverside and Smithville are 54 km apart then they are how far apart on the map?

 9 cm

4) Find the distance between Riverside and Milton if they are 12 cm apart on a map with a scale of 4 cm : 21 km.

 63 km

5) A model house is 12 cm wide. If it was built with a scale of 3 cm : 4 m then how wide is the real house?

 16 m

6) Oak Grove and Salem are 87 mi from each other. How far apart would the cities be on a map that has a scale of 5 in : 29 mi?

 15 in

7) A map has a scale of 2 in : 6 mi. If Clayton and Centerville are 10 in apart on the map then how far apart are the real cities?

 30 mi

8) A statue that is 12 ft tall casts a shadow that is 15 ft long. Find the length of the shadow that a 8 ft cardboard box casts.

 10 ft

Answer each question and round your answer to the nearest tenth.

9) A model house has a scale of 1 in : 2 ft. If the real house is 26 ft wide then how wide is the model house?

 13 in

10) A 6.5 ft tall car standing next to an adult elephant casts a 33.2 ft shadow. If the adult elephant casts a shadow that is 51.5 ft long then how tall is it?

 10.1 ft

11) If a 42.9 ft tall flagpole casts a 253.1 ft long shadow then how long is the shadow that a 6.2 ft tall woman casts?

 36.6 ft

12) Georgetown and Franklin are 9.7 in apart on a map that has a scale of 1.1 in : 15 mi. How far apart are the real cities?

 132.3 mi
MA.7.A.1.2 FORM A
Answer Section

MULTIPLE CHOICE

1. ANS: B PTS: 1 DIF: Moderate REF: Cs2: 6-3C, 6-3D
 STA: MA.7.A.1.2

2. ANS: D PTS: 1 DIF: Moderate REF: Cs2: 6-3A, 6-3B
 STA: MA.7.A.1.2

3. ANS: D PTS: 1 DIF: Moderate REF: Cs2: 6-3E
 STA: MA.7.A.1.2

4. ANS: A PTS: 1 DIF: Moderate STA: MA.7.A.1.2
 NOT: World Almanac and Book of Facts 2008 p. 147

5. ANS: D PTS: 1 DIF: Moderate STA: MA.7.A.1.2
 NOT: World Almanac and Book of Facts 2008 p. 147
MULTIPLE CHOICE

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
<th>Points</th>
<th>Difficulty</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>C</td>
<td>1</td>
<td>Moderate</td>
<td>MA.7.A.1.3</td>
</tr>
<tr>
<td>2.</td>
<td>C</td>
<td>1</td>
<td>Moderate</td>
<td>Cs2: 4-3A</td>
</tr>
<tr>
<td>3.</td>
<td>B</td>
<td>1</td>
<td>Moderate</td>
<td>Cs2: 4-3A</td>
</tr>
<tr>
<td>5.</td>
<td>C</td>
<td>1</td>
<td>Moderate</td>
<td>MA.7.A.1.3</td>
</tr>
</tbody>
</table>
MA.7.A.1.5 FORM A
Answer Section

MULTIPLE CHOICE

1. ANS: C PTS: 1 DIF: Moderate REF: Cs2: 5-3D, 5-3E
 STA: MA.7.A.1.5

2. ANS: B PTS: 1 DIF: Moderate REF: Cs2: 5-3D, 5-3E
 STA: MA.7.A.1.5

3. ANS: B PTS: 1 DIF: Moderate REF: Cs2: 5-3D, 5-3E
 STA: MA.7.A.1.5

4. ANS: C PTS: 1 DIF: Moderate REF: Cs2: 5-3B, 5-3C
 STA: MA.7.A.1.5

5. ANS: D PTS: 1 DIF: Moderate REF: Cs2: 5-3B, 5-3C
 STA: MA.7.A.1.5
<table>
<thead>
<tr>
<th>Number 1</th>
<th>Number 1</th>
<th>Number 1</th>
<th>Number 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>64.7</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>3</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>18.75%</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>

Number 1, #1

<table>
<thead>
<tr>
<th>x</th>
<th>y = 6x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>y = 6(1)</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>y = 6(2)</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>y = 6(3)</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>y = 6(4)</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>y = 6(5)</td>
<td>30</td>
</tr>
</tbody>
</table>

Number 1, #2

![Graph showing a line with points at (1,6), (2,12), (3,10), (4,24), and (5,30).]