Chapter 2

Preview

- Objectives
- Scientific Method
- Observing and Collecting Data
- Formulating Hypotheses
- Testing Hypotheses
- Theorizing
- Scientific Method
Objectives

• **Describe** the purpose of the scientific method.

• **Distinguish** between qualitative and quantitative observations.

• **Describe** the differences between hypotheses, theories, and models.
The scientific method is a logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating theories that are supported by data.
Chapter 2

Section 1 Scientific Method

Scientific Method

Click below to watch the Visual Concept.

Visual Concept
Observing and Collecting Data

- *Observing* is the use of the senses to obtain information.

- data may be
 - *qualitative* (descriptive)
 - *quantitative* (numerical)

- A *system* is a specific portion of matter in a given region of space that has been selected for study during an experiment or observation.
Chapter 2

Section 1 Scientific Method

Qualitative and Quantitative Data

Click below to watch the Visual Concept.

Visual Concept
Formulating Hypotheses

- Scientists make generalizations based on the data.

- Scientists use generalizations about the data to formulate a **hypothesis**, or testable statement.
 - Hypotheses are often “if-then” statements.
Formulating Hypotheses

Plant Growth Vs. Time

- **50% phosphorus fertilizer**
- **25% phosphorus fertilizer**
- **10% phosphorus fertilizer**
- **No fertilizer**

Axes:
- **Y-axis:** Growth (cm)
- **X-axis:** Time (days)

The graph shows the growth of plants over time with different fertilizer concentrations.
Hypothesis

Click below to watch the Visual Concept.

Visual Concept
Testing Hypotheses

• Testing a hypothesis requires experimentation that provides data to support or refute a hypothesis or theory.

• **Controls** are the experimental conditions that remain constant.

• **Variables** are any experimental conditions that change.
Theorizing

- A **model** in science is more than a physical object; it is often an explanation of how phenomena occur and how data or events are related.
 - visual, verbal, or mathematical
 - example: atomic model of matter

- A **theory** is a broad generalization that explains a body of facts or phenomena.
 - example: atomic theory
Chapter 2

Section 1 Scientific Method

Models

Click below to watch the Visual Concept.

Visual Concept
Scientific Method

1. **Observing**
 - Collecting data
 - Measuring
 - Experimenting
 - Communicating

2. **Formulating Hypotheses**
 - Organizing and analyzing data
 - Classifying
 - Inferring
 - Predicting
 - Communicating

3. **Testing**
 - Predicting
 - Experimenting
 - Communicating
 - Collecting data
 - Measuring

4. **Theorizing**
 - Constructing models
 - Predicting
 - Communicating

5. **Publish Results**
 - Communicating

Data do not support hypothesis—revise or reject hypothesis.

Results confirmed by other scientists—validate theory.
Chapter 2

Section 2 Units of Measurement

Preview

- Lesson Starter
- Objectives
- Units of Measurement
- SI Measurement
- SI Base Units
- Derived SI Units
- Conversion Factors
Lesson Starter • Would you be breaking the speed limit in a 40 mi/h zone if you were traveling at 60 km/h? •

• one kilometer = 0.62 miles •

• 60 km/h = 37.2 mi/h •

• You would not be speeding! •

• km/h and mi/h measure the same quantity using different units
Objectives

- **Distinguish** between a quantity, a unit, and a measurement standard.
- **Name** and **use** SI units for length, mass, time, volume, and density.
- **Distinguish** between mass and weight.
- **Perform** density calculations.
- **Transform** a statement of equality into a conversion factor.
Units of Measurement

• Measurements represent quantities.

• A quantity is something that has magnitude, size, or amount.

• measurement ≠ quantity
 • the teaspoon is a unit of measurement
 • volume is a quantity

• The choice of unit depends on the quantity being measured.
Scientists all over the world have agreed on a single measurement system called Le Système International d’Unités, abbreviated SI.

- SI has seven base units
 - most other units are derived from these seven
SI (Le Système International d´Unités)

Click below to watch the Visual Concept.
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Quantity symbol</th>
<th>Unit name</th>
<th>Unit abbreviation</th>
<th>Defined standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>l</td>
<td>meter</td>
<td>m</td>
<td>the length of the path traveled by light in a vacuum during a time interval of 1/299 792 458 of a second</td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>kilogram</td>
<td>kg</td>
<td>the unit of mass equal to the mass of the international prototype of the kilogram</td>
</tr>
<tr>
<td>Time</td>
<td>t</td>
<td>second</td>
<td>s</td>
<td>the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom</td>
</tr>
<tr>
<td>Temperature</td>
<td>T</td>
<td>kelvin</td>
<td>K</td>
<td>the fraction 1/273.16 of the thermodynamic temperature of the triple point of water</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>n</td>
<td>mole</td>
<td>mol</td>
<td>the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12</td>
</tr>
<tr>
<td>Electric current</td>
<td>I</td>
<td>ampere</td>
<td>A</td>
<td>the constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>I_v</td>
<td>candela</td>
<td>cd</td>
<td>the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of 1/683 watt per steradian</td>
</tr>
</tbody>
</table>
SI Base Units

Mass

- Mass is a measure of the quantity of matter.

- The SI standard unit for mass is the kilogram.

- **Weight** is a measure of the gravitational pull on matter.

- Mass does not depend on gravity.
SI Base Units

Length

• Length is a measure of distance.

• The SI standard for length is the **meter**.

• The **kilometer**, km, is used to express longer distances.

• The **centimeter**, cm, is used to express shorter distances.
Derived SI Units

- Combinations of SI base units form **derived units**.
- Pressure is measured in \(\text{kg/m} \cdot \text{s}^2 \), or **pascals**.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Quantity symbol</th>
<th>Unit</th>
<th>Unit abbreviation</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>(A)</td>
<td>square meter</td>
<td>(m^2)</td>
<td>length (\times) width</td>
</tr>
<tr>
<td>Volume</td>
<td>(V)</td>
<td>cubic meter</td>
<td>(m^3)</td>
<td>length (\times) width (\times) height</td>
</tr>
<tr>
<td>Density</td>
<td>(D)</td>
<td>kilograms per cubic meter</td>
<td>(\frac{\text{kg}}{m^3})</td>
<td>(\frac{\text{mass}}{\text{volume}})</td>
</tr>
<tr>
<td>Molar mass</td>
<td>(M)</td>
<td>kilograms per mole</td>
<td>(\frac{\text{kg}}{\text{mol}})</td>
<td>(\frac{\text{mass}}{\text{amount of substance}})</td>
</tr>
<tr>
<td>Molar volume</td>
<td>(V_m)</td>
<td>cubic meters per mole</td>
<td>(\frac{m^3}{\text{mol}})</td>
<td>(\frac{\text{volume}}{\text{amount of substance}})</td>
</tr>
<tr>
<td>Energy</td>
<td>(E)</td>
<td>joule</td>
<td>(\text{J})</td>
<td>force (\times) length</td>
</tr>
</tbody>
</table>
Derived SI Units, *continued*

Volume

- **Volume** is the amount of space occupied by an object.
 - The derived SI unit is cubic meters, m3.
 - The cubic centimeter, cm3, is often used.
 - The liter, L, is a non-SI unit.
 - 1 L = 1000 cm3.
 - 1 mL = 1 cm3.
Volume

Click below to watch the Visual Concept.

Visual Concept
Measuring the Volume of Liquids

Click below to watch the Visual Concept.
Density

- **Density** is the ratio of mass to volume, or mass divided by volume.

\[
density = \frac{mass}{volume} \text{ or } D = \frac{m}{V}
\]

- The derived SI unit is kilograms per cubic meter, kg/m³.
- g/cm³ or g/mL are also used.
- Density is a characteristic physical property of a substance.
Derived SI Units, *continued*

Density

- Density can be used as one property to help identify a substance

<table>
<thead>
<tr>
<th>Solids</th>
<th>Density at 20°C (g/cm³)</th>
<th>Liquids</th>
<th>Density at 20°C (g/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cork</td>
<td>0.24*</td>
<td>gasoline</td>
<td>0.67*</td>
</tr>
<tr>
<td>butter</td>
<td>0.86</td>
<td>ethyl alcohol</td>
<td>0.791</td>
</tr>
<tr>
<td>ice</td>
<td>0.92†</td>
<td>kerosene</td>
<td>0.82</td>
</tr>
<tr>
<td>sucrose</td>
<td>1.59</td>
<td>turpentine</td>
<td>0.87</td>
</tr>
<tr>
<td>bone</td>
<td>1.85*</td>
<td>water</td>
<td>0.998</td>
</tr>
<tr>
<td>diamond</td>
<td>3.26*</td>
<td>sea water</td>
<td>1.025**</td>
</tr>
<tr>
<td>copper</td>
<td>8.92</td>
<td>milk</td>
<td>1.031*</td>
</tr>
<tr>
<td>lead</td>
<td>11.35</td>
<td>mercury</td>
<td>13.6</td>
</tr>
</tbody>
</table>

† measured at 0°C
* typical density
** measured at 15°C
Equation for Density

Click below to watch the Visual Concept.
Sample Problem A

A sample of aluminum metal has a mass of 8.4 g. The volume of the sample is 3.1 cm3. Calculate the density of aluminum.
Sample Problem A Solution

Given: mass \((m) = 8.4 \text{ g} \)

volume \((V) = 3.1 \text{ cm}^3 \)

Unknown: density \((D) \)

Solution:

\[
\text{density} = \frac{\text{mass}}{\text{volume}} = \frac{8.4 \text{ g}}{3.1 \text{ cm}^3} = 2.7 \text{ g/cm}^3
\]
Conversion Factors

A *conversion factor* is a ratio derived from the equality between two different units that can be used to convert from one unit to the other.

example: How quarters and dollars are related

\[
\frac{4 \text{ quarters}}{1 \text{ dollar}} = 1 \quad \quad \quad \frac{1 \text{ dollar}}{4 \text{ quarters}} = 1
\]

\[
\frac{0.25 \text{ dollar}}{1 \text{ quarters}} = 1 \quad \quad \quad \frac{1 \text{ quarter}}{0.25 \text{ dollar}} = 1
\]
Chapter 2
Section 2 Units of Measurement

Conversion Factor

Click below to watch the Visual Concept.

Visual Concept
Conversion Factors, continued

- **Dimensional analysis** is a mathematical technique that allows you to use units to solve problems involving measurements.

- quantity sought = quantity given × conversion factor

- **example:** the number of quarters in 12 dollars

 number of quarters = 12 dollars × conversion factor

 \[\text{? quarters} = 12 \text{ dollars} \times \frac{4 \text{ quarter}}{1 \text{ dollar}} = 48 \text{ quarters} \]
Using Conversion Factors

1. Identify the quantity and unit given and the unit that you want to convert to.

2. Using the equality that relates the two units, set up the conversion factor that cancels the given unit and leaves the unit that you want to convert to.

3. Multiply the given quantity by the conversion factor. Cancel units to verify that the units left are the ones you want for your answer.
Conversion Factors, *continued*

Deriving Conversion Factors

- You can derive conversion factors if you know the relationship between the unit you have and the unit you want.

- **example:** conversion factors for meters and decimeters

\[
\begin{align*}
\frac{1 \text{ m}}{10 \text{ dm}} & \quad \frac{0.1 \text{ m}}{\text{dm}} & \quad \frac{10 \text{ dm}}{\text{m}}
\end{align*}
\]
SI Conversions

Key problem-solving approach: SI conversions

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion Factor</th>
<th>Base Unit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>giga (g)</td>
<td>$\times 10^9$</td>
<td>meter, m</td>
</tr>
<tr>
<td></td>
<td>$\div 10^9$</td>
<td>seconds, s</td>
</tr>
<tr>
<td>mega (M)</td>
<td>$\times 10^6$</td>
<td>ampere, A</td>
</tr>
<tr>
<td></td>
<td>$\div 10^6$</td>
<td>mole, mol</td>
</tr>
<tr>
<td>kilo (k)</td>
<td>$\times 10^3$</td>
<td>candela, cd</td>
</tr>
<tr>
<td></td>
<td>$\div 10^3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\div 10^2$</td>
<td>centi (c)</td>
</tr>
<tr>
<td></td>
<td>$\times 10^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\div 10^3$</td>
<td>milli (m)</td>
</tr>
<tr>
<td></td>
<td>$\times 10^3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\div 10^6$</td>
<td>micro (µ)</td>
</tr>
<tr>
<td></td>
<td>$\times 10^6$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\div 10^9$</td>
<td>nano (n)</td>
</tr>
<tr>
<td></td>
<td>$\times 10^9$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\div 10^{12}$</td>
<td>pico (p)</td>
</tr>
<tr>
<td></td>
<td>$\times 10^{12}$</td>
<td></td>
</tr>
</tbody>
</table>

*Kilogram, the base unit for mass, does not appear in this list because it has a different set of conversion values (1 kg = 1000 g).
Sample Problem B

Express a mass of 5.712 grams in milligrams and in kilograms.
Conversion Factors, *continued*

Sample Problem B Solution

Express a mass of 5.712 grams in milligrams and in kilograms.

Given: 5.712 g

Unknown: mass in mg and kg

Solution: mg

1 g = 1000 mg

Possible conversion factors: \(\frac{1000 \text{ mg}}{\text{g}} \) and \(\frac{1 \text{ g}}{1000 \text{ mg}} \)

\[
5.712 \text{ g} \times \frac{1000 \text{ mg}}{\text{g}} = 5712 \text{ mg}
\]
Conversion Factors, continued

Sample Problem B Solution, continued

Express a mass of 5.712 grams in milligrams and in kilograms.

Given: 5.712 g

Unknown: mass in mg and kg

Solution: kg

\[1 \text{ kg} = 1000 \text{ g} \]

Possible conversion factors:

\[\frac{1000 \text{ g}}{\text{kg}} \quad \text{and} \quad \frac{1 \text{ kg}}{1000 \text{ g}} \]

\[5.712 \text{ g} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 0.005712 \text{ kg} \]
Preview

• Lesson Starter
• Objectives
• Accuracy and Precision
• Significant Figures
• Scientific Notation
• Using Sample Problems
• Direct Proportions
• Inverse Proportions
Lesson Starter

• Look at the specifications for electronic balances. How do the instruments vary in precision?

• Discuss using a beaker to measure volume versus using a graduated cylinder. Which is more precise?
Objectives

• **Distinguish** between accuracy and precision.

• **Determine** the number of significant figures in measurements.

• **Perform** mathematical operations involving significant figures.

• **Convert** measurements into scientific notation.

• **Distinguish** between inversely and directly proportional relationships.
Accuracy and Precision

- **Accuracy** refers to the closeness of measurements to the correct or accepted value of the quantity measured.

- **Precision** refers to the closeness of a set of measurements of the same quantity made in the same way.
Accuracy and Precision

a. Darts within the bull’s-eye mean high accuracy and high precision.

b. Darts clustered within a small area but far from the bull’s-eye mean low accuracy and high precision.

c. Darts scattered around the target and far from the bull’s-eye mean low accuracy and low precision.
Accuracy and Precision

Click below to watch the Visual Concept.
Accuracy and Precision, continued

Percentage Error

- **Percentage error** is calculated by subtracting the accepted value from the experimental value, dividing the difference by the accepted value, and then multiplying by 100.

\[
\text{Percentage error} = \frac{\text{Value}_{\text{experimental}} - \text{Value}_{\text{accepted}}}{\text{Value}_{\text{accepted}}} \times 100
\]
Accuracy and Precision, continued

Sample Problem C

A student measures the mass and volume of a substance and calculates its density as 1.40 g/mL. The correct, or accepted, value of the density is 1.30 g/mL. What is the percentage error of the student’s measurement?
Accuracy and Precision, continued

Sample Problem C Solution

\[
\text{Percentage error} = \frac{\text{Value}_{\text{experimental}} - \text{Value}_{\text{accepted}}}{\text{Value}_{\text{accepted}}} \times 100
\]

\[
= \frac{1.40 \text{ g/mL} - 1.30 \text{ g/mL}}{1.30 \text{ g/mL}} \times 100 = 7.7\%
\]
Accuracy and Precision, *continued*

Error in Measurement

- Some error or uncertainty always exists in any measurement.
 - skill of the measurer
 - conditions of measurement
 - measuring instruments
Significant Figures

• **Significant figures** in a measurement consist of all the digits known with certainty plus one final digit, which is somewhat uncertain or is estimated.

• The term significant **does not** mean certain.
Reporting Measurements Using Significant Figures
Significant Figures, *continued*

Determining the Number of Significant Figures

<table>
<thead>
<tr>
<th>Rule</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Zeros appearing between nonzero digits are significant.</td>
<td>a. 40.7 L has three significant figures.</td>
</tr>
<tr>
<td></td>
<td>b. 87 009 km has five significant figures.</td>
</tr>
<tr>
<td>2. Zeros appearing in front of all nonzero digits are not significant.</td>
<td>a. 0.095 897 m has five significant figures.</td>
</tr>
<tr>
<td></td>
<td>b. 0.0009 kg has one significant figure.</td>
</tr>
<tr>
<td>3. Zeros at the end of a number and to the right of a decimal point are significant.</td>
<td>a. 85.00 g has four significant figures.</td>
</tr>
<tr>
<td></td>
<td>b. 9.000 000 000 mm has 10 significant figures.</td>
</tr>
<tr>
<td>4. Zeros at the end of a number but to the left of a decimal point may or may not be significant. If a zero has not been measured or estimated but is just a placeholder, it is not significant. A decimal point placed after zeros indicates that they are significant.</td>
<td>a. 2000 m may contain from one to four significant figures, depending on how many zeros are placeholders. For measurements given in this text, assume that 2000 m has one significant figure.</td>
</tr>
<tr>
<td></td>
<td>b. 2000. m contains four significant figures, indicated by the presence of the decimal point.</td>
</tr>
</tbody>
</table>
Chapter 2

Section 3 Using Scientific Measurements

Significant Figures

Click below to watch the Visual Concept.
Chapter 2

Section 3 Using Scientific Measurements

Rules for Determining Significant Zeros

Click below to watch the Visual Concept.

Visual Concept
Sample Problem D

How many significant figures are in each of the following measurements?

a. 28.6 g
b. 3440. cm
c. 910 m
d. 0.046 04 L
e. 0.006 700 0 kg
Sample Problem D Solution

a. 28.6 g
 There are no zeros, so all three digits are significant.

b. 3440. cm
 By rule 4, the zero is significant because it is immediately followed by a decimal point; there are 4 significant figures.

c. 910 m
 By rule 4, the zero is not significant; there are 2 significant figures.
d. 0.046 04 L

By rule 2, the first two zeros are not significant; by rule 1, the third zero is significant; there are 4 significant figures.

e. 0.006 700 0 kg

By rule 2, the first three zeros are not significant; by rule 3, the last three zeros are significant; there are 5 significant figures.
Significant Figures, continued
Rounding

A number is rounded by considering the digit(s) after the last digit to be retained. The last digit and any following digits are then replaced with zeros if the number is followed by a decimal point. The last digit is then increased or decreased by 1, depending on the digit(s) following it. The results are rounded to the nearest multiple of 10, 100, 1000, etc., depending on the number of significant figures.

Table: Rounding Rules

<table>
<thead>
<tr>
<th>Condition of the digit following the last digit to be retained</th>
<th>Rule for the last digit</th>
<th>Example (rounded to three significant figures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>greater than 5</td>
<td>be increased by 1</td>
<td>42.68 g → 42.7 g</td>
</tr>
<tr>
<td>less than 5</td>
<td>stay the same</td>
<td>17.32 m → 17.3 m</td>
</tr>
<tr>
<td>5, followed by nonzero digit(s)</td>
<td>be increased by 1</td>
<td>2.7851 cm → 2.79 cm</td>
</tr>
<tr>
<td>5, not followed by nonzero digit(s), and preceded by an odd digit</td>
<td>be increased by 1</td>
<td>4.635 kg → 4.64 kg (because 3 is odd)</td>
</tr>
<tr>
<td>5, not followed by nonzero digit(s), and the preceding significant digit is even</td>
<td>stay the same</td>
<td>78.65 mL → 78.6 mL (because 6 is even)</td>
</tr>
</tbody>
</table>
Rules for Rounding Numbers

Click below to watch the Visual Concept.
Addition or Subtraction with Significant Figures

- When adding or subtracting decimals, the answer must have the same number of digits to the right of the decimal point as there are in the measurement having the fewest digits to the right of the decimal point.

Addition or Subtraction with Significant Figures

- For multiplication or division, the answer can have no more significant figures than are in the measurement with the fewest number of significant figures.
Sample Problem E

Carry out the following calculations. Express each answer to the correct number of significant figures.

a. $5.44 \text{ m} - 2.6103 \text{ m}$

b. $2.4 \text{ g/mL} \times 15.82 \text{ mL}$
Sample Problem E Solution

a. $5.44 \text{ m} - 2.6103 \text{ m} = 2.84 \text{ m}$

 There should be two digits to the right of the decimal point, to match 5.44 m.

b. $2.4 \text{ g/mL} \times 15.82 \text{ mL} = 38 \text{ g}$

 There should be two significant figures in the answer, to match 2.4 g/mL.
Significant Figures, *continued*

Conversion Factors and Significant Figures

- There is no uncertainty exact conversion factors.

- Most exact conversion factors are defined quantities.
In scientific notation, numbers are written in the form $M \times 10^n$, where the factor M is a number greater than or equal to 1 but less than 10 and n is a whole number.

- **Example:** $0.000 \, 12 \, \text{mm} = 1.2 \times 10^{-4} \, \text{mm}$

- Move the decimal point four places to the right and multiply the number by 10^{-4}.
Scientific Notation, continued

1. Determine M by moving the decimal point in the original number to the left or the right so that only one nonzero digit remains to the left of the decimal point.

2. Determine n by counting the number of places that you moved the decimal point. If you moved it to the left, n is positive. If you moved it to the right, n is negative.
Scientific Notation, \textit{continued}

Mathematical Operations Using Scientific Notation

1. Addition and subtraction — These operations can be performed only if the values have the same exponent (n factor).

Example: $4.2 \times 10^4 \text{ kg} + 7.9 \times 10^3 \text{ kg}$

\begin{align*}
4.2 \times 10^4 \text{ kg} & \quad \text{or} \quad 7.9 \times 10^3 \text{ kg} \\
+0.79 \times 10^4 \text{ kg} & \quad \text{or} \quad +42 \times 10^3 \text{ kg} \\
4.99 \times 10^4 \text{ kg} & \quad 49.9 \times 10^3 \text{ kg} = 4.99 \times 10^4 \text{ kg}
\end{align*}

rounded to $5.0 \times 10^4 \text{ kg}$
Section 3 Using Scientific Measurements

Scientific Notation, continued

Mathematical Operations Using Scientific Notation

2. **Multiplication** — The M factors are multiplied, and the exponents are added algebraically.

example: \((5.23 \times 10^6 \, \mu m)(7.1 \times 10^{-2} \, \mu m)\)

\[
= (5.23 \times 7.1)(10^6 \times 10^{-2})
\]

\[
= 37.133 \times 10^4 \, \mu m^2
\]

\[
= 3.7 \times 10^5 \, \mu m^2
\]
Section 3 Using Scientific Measurements

Scientific Notation, continued
Mathematical Operations Using Scientific Notation

3. Division — The M factors are divided, and the exponent of the denominator is subtracted from that of the numerator.

example:

\[
\frac{5.44 \times 10^7 \text{ g}}{8.1 \times 10^4 \text{ mol}}
\]

\[
= \frac{5.44}{8.1} \times 10^{7-4} \text{ g/mol}
\]

\[
= 0.6716049383 \times 10^3
\]

\[
= 6.7 \times 10^2 \text{ g/mol}
\]
Scientific Notation

Click below to watch the Visual Concept.

Visual Concept
Using Sample Problems

- **Analyze**
 The first step in solving a quantitative word problem is to read the problem carefully at least twice and to analyze the information in it.

- **Plan**
 The second step is to develop a plan for solving the problem.

- **Compute**
 The third step involves substituting the data and necessary conversion factors into the plan you have developed.
Using Sample Problems, continued

- Evaluate
 Examine your answer to determine whether it is reasonable.

1. Check to see that the units are correct.

2. Make an estimate of the expected answer.

3. Check the order of magnitude in your answer.

4. Be sure that the answer given for any problem is expressed using the correct number of significant figures.
Sample Problem F

Calculate the volume of a sample of aluminum that has a mass of 3.057 kg. The density of aluminum is 2.70 g/cm³.
Using Sample Problems, continued

Sample Problem F Solution

1. Analyze

 Given: mass = 3.057 kg, density = 2.70 g/cm³

 Unknown: volume of aluminum

2. Plan

 The density unit is g/cm³, and the mass unit is kg.

 Conversion factor: 1000 g = 1 kg

 Rearrange the density equation to solve for volume.

 \[D = \frac{m}{V} \quad \Rightarrow \quad V = \frac{m}{D} \]
Using Sample Problems, *continued*

Sample Problem F Solution, *continued*

3. Compute

\[V = \frac{3.057 \text{ kg}}{2.70 \text{ g/cm}^3} \times \frac{1000 \text{ g}}{\text{kg}} \]

\[= 1132.222 \ldots \text{ cm}^3 \text{ (calculator answer)} \]

round answer to three significant figures

\[V = 1.13 \times 10^3 \text{ cm}^3 \]
Using Sample Problems, continued

Sample Problem F Solution, continued

4. Evaluate

Answer: \(V = 1.13 \times 10^3 \text{ cm}^3 \)

- The unit of volume, cm\(^3\), is correct.
- An order-of-magnitude estimate would put the answer at over 1000 cm\(^3\).

\[
\frac{3}{2} \times 1000
\]

- The correct number of significant figures is three, which matches that in 2.70 g/cm.
Direct Proportions

• Two quantities are directly proportional to each other if dividing one by the other gives a constant value.

• \(y \propto x \)

• read as “y is proportional to x.”
Section 3 Using Scientific Measurements

Direct Proportion

Mass-Volume Data for Aluminum at 20°C

<table>
<thead>
<tr>
<th>Mass (g)</th>
<th>Volume (cm³)</th>
<th>(\frac{m}{V}) (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.4</td>
<td>20.1</td>
<td>2.70</td>
</tr>
<tr>
<td>65.7</td>
<td>24.15</td>
<td>2.72</td>
</tr>
<tr>
<td>83.5</td>
<td>30.9</td>
<td>2.70</td>
</tr>
<tr>
<td>97.2</td>
<td>35.8</td>
<td>2.71</td>
</tr>
<tr>
<td>105.7</td>
<td>39.1</td>
<td>2.70</td>
</tr>
</tbody>
</table>

Mass vs. Volume of Aluminum

- Graph showing the relationship between Mass (g) and Volume (cm³) for Aluminum at 20°C.
Inverse Proportions

- Two quantities are **inversely proportional** to each other if their product is constant.

\[y \propto \frac{1}{x} \]

- read as “y is proportional to 1 divided by x.”
Inverse Proportion

Pressure-Volume Data for Nitrogen at Constant Temperature

<table>
<thead>
<tr>
<th>Pressure (kPa)</th>
<th>Volume (cm³)</th>
<th>$P \times V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>500</td>
<td>50 000</td>
</tr>
<tr>
<td>150</td>
<td>333</td>
<td>49 500</td>
</tr>
<tr>
<td>200</td>
<td>250</td>
<td>50 000</td>
</tr>
<tr>
<td>250</td>
<td>200</td>
<td>50 000</td>
</tr>
<tr>
<td>300</td>
<td>166</td>
<td>49 800</td>
</tr>
<tr>
<td>350</td>
<td>143</td>
<td>50 500</td>
</tr>
<tr>
<td>400</td>
<td>125</td>
<td>50 000</td>
</tr>
<tr>
<td>450</td>
<td>110</td>
<td>49 500</td>
</tr>
</tbody>
</table>
Direct and Inverse Proportions

Click below to watch the Visual Concept.

Visual Concept
End of Chapter 2 Show